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Adaptive extensions of a two-stage group
sequential procedure for testing primary
and secondary endpoints (II): sample
size re-estimation
Ajit C. Tamhane,a*† Yi Wub and Cyrus R. Mehtac,d

In this part II of the paper on adaptive extensions of a two-stage group sequential procedure (GSP) for testing
primary and secondary endpoints, we focus on the second stage sample size re-estimation based on the first
stage data. First, we show that if we use the Cui–Huang–Wang statistics at the second stage, then we can use the
same primary and secondary boundaries as for the original procedure (without sample size re-estimation) and
still control the type I familywise error rate. This extends their result for the single endpoint case. We further
show that the secondary boundary can be sharpened in this case by taking the unknown correlation coefficient
� between the primary and secondary endpoints into account through the use of the confidence limit method
proposed in part I of this paper. If we use the sufficient statistics instead of the CHW statistics, then we need
to modify both the primary and secondary boundaries; otherwise, the error rate can get inflated. We show how
to modify the boundaries of the original group sequential procedure to control the familywise error rate. We
provide power comparisons between competing procedures. We illustrate the procedures with a clinical trial
example. Copyright © 2012 John Wiley & Sons, Ltd.

Keywords: adaptive designs; familywise error rate; gatekeeping procedures; multiple comparisons; multiple
endpoints; O’Brien–Fleming boundary; Pocock boundary; sample size re-estimation.

1. Introduction

Adaptive designs have received wide acceptance both from clinical researchers as well as regulators.
A common adaptation is sample size re-estimation based on interim estimates of the treatment effect
and/or of the variance of the observations. Much work has been carried out on the problem of sample
size re-estimation in group sequential designs; see, for example, [1–7]. All of these works deal with a
single endpoint. In this paper, we extend these methods to the two endpoints case where the primary
endpoint is a gatekeeper for the secondary endpoint and the two-stage GSP proposed in [8] is used.

The outline of the paper is as follows. In Section 2, we review the basic notation and assumptions.
Section 3 describes two methods of sample size re-estimation. Section 4 studies two GSPs based on
the Cui–Hung–Wang (CHW) statistics. The first GSP uses separate ˛-level primary and secondary
boundaries; this choice of boundaries implicitly assumes the least favorable value of � D 1. The second
GSP uses sharper boundaries that take into account the unknown � through the confidence limit method
proposed in part I. We provide a power comparison between the two GSPs to assess the power advantage
of the second GSP. Section 5 discusses the use of the sufficient test statistics instead of the CHW test
statistics. Section 6 discusses numerical evaluation of the critical boundaries for the GSP based on
the sufficient test statistics. Section 7 gives simulation-based power comparisons between competing
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procedures. Section 8 shows how the methods presented in the previous sections for the one-sample
problem extend to the two-sample problem. Section 9 gives a clinical trial example to illustrate the
methodology proposed in the paper. Finally, Section 10 gives a discussion and final recommendation.

2. Notation and background

The basic setup is the same as in part I [9], which we review here briefly for convenience. Consider
a two-stage GSP with sample sizes n1 and n2 with independent and identically distributed bivariate
normal observations .Xij ; Yij / on the primary and secondary endpoints for the j th patient in the i th
stage (i D 1; 2, j D 1; : : : ; ni ), where Xij � N.�1; �21 /, Yij � N.�2; �

2
2 / and corr.Xij ; Yij / D � > 0.

Let ı1 D �1=�1 and ı2 D �2=�2. For convenience, assume that �1 and �2 are known, but all other
parameters are unknown. In practice, �1 and �2 are unknown and are estimated. In Section 5 of part I,
we studied via simulation the effect on the familywise error rate (FWER) of using estimates in place of
the unknown �1 and �2 and found that the FWER requirement (1) is satisfied.

The hypotheses to be tested are H1 W ı1 D 0 and H2 W ı2 D 0 against upper one-sided alternatives,
subject to the gatekeeping restriction that H2 can be tested only if H1 is rejected; otherwise, H2 is
accepted without a test. Any test procedure under consideration must satisfy the FWER requirement

FWERD P fReject at least one true Hi .i D 1; 2/g6 ˛ (1)

for a specified ˛ when either H1 or H2 is true.
The first stage test statistics are defined as

X1 DX
.1/ D

X
.1/

�1=
p
n1

and Y1 D Y
.1/ D

Y
.1/

�2=
p
n1
; (2)

where X
.1/

and Y
.1/

are the first stage sample means. Similarly, the second stage test statistics are
defined as

X .2/ D
X
.2/

�1=
p
n2

and Y .2/ D
Y
.2/

�2=
p
n2
; (3)

where X
.2/

and Y
.2/

are the second stage sample means. Then, the cumulative test statistics at the final
look can be expressed as

X2 D
p
f X .1/C

p
1� f X .2/; Y2 D

p
f Y .1/C

p
1� f Y .2/ (4)

where f D n1=.n1C n2/ is the information fraction [10] at the interim look.
The GSP, denoted by P , operates as follows.

Stage 1. Take n1 observations, .X1j ; Y1j /, j D 1; : : : ; n1, and compute .X1; Y1/. If X1 6 c1, continue
to stage 2. If X1 > c1, reject H1 and test H2. If Y1 > d1, reject H2; otherwise, accept H2. In
either case, stop sampling.

Stage 2. Take n2 observations, .X2j ; Y2j /, j D 1; : : : ; n2, and compute .X2; Y2/. IfX2 6 c2, acceptH1
and stop testing; otherwise, rejectH1 and testH2. If Y2 > d2, rejectH2; otherwise, acceptH2.

We determine the critical boundaries .c1; c2/ and .d1; d2/ of P to satisfy the FWER requirement (1).
We next define the notation for the case where the second stage sample size is re-estimated in light of

the first stage data. We will denote the re-estimated second stage sample size by n02; typically, n02 > n2.
Rules for determining n02 are generally functions of the primary conditional power (CP) of the GSP,
defined as

CPD P fX2 > c2jX1 D x1g: (5)

In the sequel, we will consider two different statistics for adaptive designs. To define these statistics,
denote the second stage test statistics for the primary and secondary endpoints based on n02 by

X
0.2/ D

X
0.2/

�1=
p
n02

and Y
0.2/ D

Y
0.2/

�2=
p
n02
; (6)
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whereX
0.2/

and Y
0.2/

are the second stage sample means based on n02. The CHW statistics are defined as

X 02 D
p
f X .1/C

p
1� f X

0.2/ and Y 02 D
p
f Y .1/C

p
1� f Y

0.2/; (7)

which use the unadjusted weights
p
f and

p
1� f based on the preplanned sample sizes.

As a result, they are not sufficient statistics, that is, they are not functions of the over-

all sample means X
0

2 D
�
n1X

.1/
C n02X

0.2/
�
=
�
n1C n

0
2

�
and Y

0

2 D
�
n1Y

.1/
C n02Y

0.2/
�
=
�
n1C n

0
2

�
,

respectively. Therefore, we will also consider the following sufficient test statistics at the second stage:

X
00

2 D
X
0

2

�1=
p
n1C n

0
2

D
p
f 0X .1/C

p
1� f 0X

0.2/ (8)

and

Y
00

2 D
Y
0

2

�2=
p
n1C n

0
2

D
p
f 0Y .1/C

p
1� f 0Y

0.2/; (9)

where f 0 D n1=.n1 C n
0
2/ is the information fraction at the interim look for the adaptive design andp

f 0 and
p
1� f 0 are the adjusted weights based on the adjusted sample size.

3. Methods for sample size re-estimation

The second stage sample size will be re-estimated if the primary CP after the first stage is not large
enough to meet the prespecified power requirement. Generally, this is because the actual treatment effect
is smaller than the expected treatment effect for which the trial was designed to meet the prespecified
power requirement. An expression for CP is given by

CPD P
�p

f X .1/C
p
1� f X .2/ > c2

ˇ̌̌
X .1/ D x1

�
D P

 
X .2/ � ı1

p
n2 >

c2 � x1
p
fp

1� f
� ı1
p
n2

ˇ̌̌
X .1/ D x1

!

D 1�ˆ

 
c2 � x1

p
fp

1� f
� ı1
p
n2

!
: (10)

We will consider two different rules for determining the second stage adjusted sample size n02.

1. Gao et al. [6] proposed determining n02 so that CP is preserved at the planned value 1 � ˇ. If ´ˇ
denotes the 1�ˇ quantile of the standard normal distribution, then from (10), we get the following
formula for n02:

n02 D
1

ı21

�
1
p
n2

�
c2
p
n1C n2 � x1

p
n1
�
C ´ˇ

	2
: (11)

In this expression, ı1 is an unknown parameter, which we can replace by its sample estimate,bı1 D x1=pn1. However, this can result in impractically large n02 values if x1 or equivalently CP is
small. Therefore, we truncate n02 using the following modification:

n02 D

�
min.n02 according to (11); �n2/ if CPmin 6 CP6 CPmax

n2 otherwise,
(12)

where ŒCPmin;CPmax� is called the promising zone and � > 1 is a prespecified constant.
2. Because of the sensitivity of the aforementioned formula to bı1 and the numerical difficulties

involved in computing the modified critical boundaries, we carry out the power comparisons
reported in the present paper by using a simpler version of the aforementioned rule, called the
fixed increase rule in which we drop the dependence of n02 onbı1. Thus,

n02 D

�
�n2 if CPmin 6 CP6 CPmax

n2 otherwise.
(13)
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It is possible to devise other modifications. For example, one could increase n2 to n02 D �n2 for CP in
the interval ŒCPmin;CPmid�, where CPmid is some point in the interval ŒCPmin;CPmax� (e.g., the midpoint
of the interval) and linearly taper off n02 to n2 over the interval ŒCPmid;CPmax�.

4. Procedures based on Cui–Hung–Wang statistics

We will offer two procedures, labeled P 01 and P 02, based on the CHW statistics. P 01 uses separate ˛-
level boundaries, .c1; c2/ and .d1; d2/, for testing H1 and H2 (see (14)), and implicitly assumes that
the unknown � is at its least favorable value � D 1. On the other hand, P 02 uses the adjusted secondary
boundary .d 01; d

0
2/ on the basis of the confidence limit method for unknown � proposed in part I.

4.1. Procedure P 01
Let .c1; c2/ and .d1; d2/ be any ˛-level boundaries for the primary and secondary endpoints, respec-
tively. Procedure P 01 is the same as P stated in Section 2 but uses the CHW statistics .X1; X 02/ and
.Y1; Y

0
2/ in conjunction with these boundaries. In Proposition 1, we show that P 01 controls the FWER.

In fact, we will show this result for a general m-stage GSP for m > 2, which is an extension of the
corresponding result in CHW for the single endpoint case. We first introduce the necessary notation for
this general case.

Consider a non-adaptive procedure P for a generalm-stage GSP with sample sizes n1; : : : ; nm, which
uses the test statistics .X1; : : : ; Xm/ and .Y1; : : : ; Ym/ in conjunction with the boundaries .c1; : : : ; cm/
and .d1; : : : ; dm/, respectively. The test statistics .Xi ; Yi / are the standardized cumulative sample means
at the i th look (i D 1; : : : ; m) and .c1; : : : ; cm/ and .d1; : : : ; dm/ are separate ˛-level boundaries,
which satisfy

PH1.[
m
iD1fXi > cig/D ˛ and PH2.[

m
iD1fYi > dig/D ˛: (14)

Consider a similar generalization of the adaptive m-stage GSP in which the sample sizes are adjusted
in the same proportion at some stage ` < m for all subsequent stages i > `, that is, the adjusted sample
sizes are n0i D �ni for all stages i > `, where the common proportionality constant � > 1 is a function
of the data up to stage `. Let Ni D n1 C � � � C ni be the cumulative unadjusted sample sizes for stages
i D 1; : : : ; m and let fij D nj =Ni (1 6 j 6 i , 1 6 i 6 m). Denote by X .i/ and Y .i/ the stagewise
standardized statistics for stage i in the non-adaptive part of the procedure where

X .i/ D

Pni
jD1Xij

�1
p
ni

and Y .i/ D

Pni
jD1 Yij

�2
p
ni

for 16 i 6 `

and by X
0.i/ and Y

0.i/ the corresponding statistics for the adaptive part of the procedure, where

X
0.i/ D

Pn0
i

jD1Xij

�1
p
n0i

and Y
0.i/ D

Pn0
i

jD1 Yij

�2
p
n0i

for `C 16 i 6m:

Then, the CHW statistics for stages i > ` can be expressed as

X 0i D
X̀
jD1

q
fijX

.j /C

iX
jD`C1

q
fijX

0.j / and Y 0i D
X̀
jD1

q
fijY

.j /C

iX
jD`C1

q
fijY

0.j /; (15)

which generalize those in (7). These CHW statistics can be shown to be equivalent to Fisher’s [1] vari-
ance function statistics when the sample size re-estimation is carried out only at one stage during the
trial and the sample sizes for all subsequent stages are adjusted in the same proportion.

Proposition 1
Consider an m-stage group sequential procedure P with fixed sample sizes n1; : : :,nm, which uses the
test statistics .X1; : : : ; Xm/ and .Y1; : : : ; Ym/ in conjunction with ˛-level boundaries .c1; : : : ; cm/ and
.d1; : : : ; dm/ satisfying (14). Let P 01 be an adaptive extension of P , which adjusts all sample sizes after
stage ` < m in the same proportion so that n0i D �ni for some � > 1 for all i > ` and uses the statis-
tics .X1; : : : ; X`; X 0`C1; : : : ; X

0
m/ and .Y1; : : : ; Y`; Y 0`C1; : : : ; Y

0
m/ in conjunction with the same ˛-level
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boundaries .c1; : : : ; cm/ and .d1; : : : ; dm/, where .X 0i ; Y
0
i / for `C 1 6 i 6 m are the CHW statistics

defined in (15). Then, P 01 controls the FWER at level ˛.

Proof
We will first show that P controls the FWER at level ˛. Consider three cases in which a type I error
can occur.

Case 1 (Both H1 and H2 are true): In this case,

FWERD PH1\H2.fReject H1g [ fReject H2g/

D PH1.Reject H1/ .because H2 can be rejected only if H1 is rejected/

D PH1.[
m
iD1fXi > cig/D ˛:

Case 2 (H1 is true and H2 is false): In this case,

FWERD PH1.Reject H1/D PH1.[
m
iD1fXi > cig/D ˛:

Case 3 (H1 is false and H2 is true): In this case,

FWERD PH2.Reject H2/

D PH2.[
m
iD1fX1 6 c1; : : : ; Xi�1 6 ci�1; Xi > ci ; Yi > dig/

< PH2.[
m
iD1fYi > dig/D ˛:

The same proofs go through for P 01 because, as shown by Cui et al. [2], the joint distributions
of .X1; : : : ; X`; X 0`C1; : : : ; X

0
m/ and .X1; : : : ; ; X`; X`C1; : : : ; Xm/ are the same under H1. Similarly,

the joint distributions of .Y1; : : : ; Y`; Y 0`C1; : : : ; Y
0
m/ and .Y1; : : : ; Y`; Y`C1; : : : ; Ym/ are the same

under H2. �

Remark 1
The aforementioned result formD 2 follows directly from Propositions 1–3 in [8], but it was not explic-
itly stated. The proof given there was more complicated. The present proof due to Liu [11] is more direct
and simpler besides being more general.

4.2. Procedure P 02
As can be seen from the aforementioned proof, P 01 does not use any information on �; effectively, it
assumes the least favorable value � D 1. We now propose procedure P 02 that uses the confidence limit
method of part I based on the first stage sample correlation coefficient r to obtain a sharper second
stage boundary.

Proposition 2
Let .c1; c2/ and .d1; d2/ be any ˛-level boundaries of P that control the FWER at level ˛. Then, P 02,
which uses the CHW statistics in conjunction with the critical boundaries .c01; c

0
2/ and .d 01; d

0
2/, controls

the FWER at level ˛ if we set .c01; c
0
2/D .c1; c2/, d

0
1 D d1 and d 02 as the solution to the equation

ˆ2

 p
f x1 � c2p
1� f

C ı1

q
n02;

p
f y1 � d

0
2p

1� f

ˇ̌̌̌
ˇ �
!
Dˆ2

 p
f x1 � c2p
1� f

C ı1
p
n2;

p
f y1 � d2p
1� f

ˇ̌̌̌
ˇ �
!
; (16)

where .x1; y1/ are the observed values of .X1; Y1/ and ˆ2.�; �j�/ is the CDF of the standard bivariate
normal distribution with correlation coefficient �.

Proof
We have seen from the proof of Proposition 1 that the FWER is controlled underH1 if .c01; c

0
2/D .c1; c2/.

Thus, we only need to consider the configuration H 1 \H2 . As in the proof of Proposition 1, we first
consider the FWER of P , which can be written as P1CP2, where

P1 D PH2.X1 > c1; Y1 > d1/ and P2 D PH2.X1 6 c1; X2 > c2; Y2 > d2/: (17)

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2041–2054
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By conditioning on .X1; Y1/ D .x1; y1/ and by using the fact that under H 1 \H2, .X1 � ı1
p
n1; Y1/

is distributed as standard bivariate normal with correlation coefficient � and denoting its PDF �2.x1 �
ı1
p
n1; y1j�/ by fX1;Y1.x1; y1/, we can write P2 as

P2 D

Z 1
�1

Z c1

�1

PH2.X2 > c2; Y2 > d2jx1; y1/fX1;Y1.x1; y1/dx1dy1

D

Z 1
�1

Z c1

�1

PH2

 
X .2/ >

c2 �
p
f x1p

1� f
; Y .2/ >

d2 �
p
f y1p

1� f

ˇ̌̌̌
ˇ x1; y1

!
fX1;Y1.x1; y1/dx1dy1

D

Z 1
�1

Z c1

�1

PH2

 
Z1 >

c2 �
p
f x1p

1� f
� ı1
p
n2; Z2 >

d2 �
p
f y1p

1� f

!
fX1;Y1.x1; y1/dx1dy1

D

Z 1
�1

Z c1

�1

ˆ2

 p
f x1 � c2p
1� f

C ı1
p
n2;

p
f y1 � d2p
1� f

ˇ̌̌̌
ˇ �
!
�2.x1 � ı1

p
n1; y1j�/dx1dy1: (18)

In the aforementioned derivation, we have used the fact that under H 1 \H2, .X .2/ � ı1
p
n2; Y

.2// has
a standard bivariate normal distribution with correlation coefficient �. The FWER of P 02 underH 1\H2
can be analogously written as P 01CP

0
2, where P 01 and P 02 are defined as in (17) but with .d1; d2/ replaced

by .d 01; d
0
2/ and .X2; Y2/ replaced by .X 02; Y

0
2/. Note that P 01 D P1 because c01 D c1 and d 01 D d1.

Furthermore, P 02 has the same integral expression (18) as for P2 but with d2 replaced by d 02 and n2
replaced by n02 (which is fixed conditioned on X1 D x1). Setting the integrands in the two integral
expressions equal gives Equation (16). �

Remark 2
Note that d 02 depends on the observed .x1; y1/, and thus, P 02 controls the FWER conditionally on
.x1; y1/. However, because this holds for every .x1; y1/, it also holds unconditionally.

Remark 3
Equation (16) involves two unknown parameters, � and ı1. It is not clear how to use the upper confidence
limit �� in place of � because �� and its associated confidence level 1� " were determined in part I to
optimize the .d1; d2/ boundary. There is no analog of that problem here. So, we used the sample esti-
mate r for � and similarly the sample estimatebı1 D x1=pn1 for ı1. On the other hand, for choosing the
unadjusted second stage critical boundary for the secondary endpoint, d2, we employed the confidence
limit method proposed in part I and used �� for the unknown �.

5. Procedures based on sufficient statistics

We consider two adaptive group sequential procedures, P 001 and P 002 , based on the sufficient statistics
.X1; X

00

2 / and .Y1; Y
00

2 / (where X
00

2 and Y
00

2 are defined in (8) and (9)). These are used in conjunction
with critical boundaries .c

00

1 ; c
00

2 / and .d
00

1 ; d
00

2 / (different for P 001 and P 002 ), which are determined in the
following text to control the FWER. First, we consider procedure P 001 . In Proposition 3, we show that the
critical boundaries .c

00

1 ; c
00

2 / and .d
00

1 ; d
00

2 / can be chosen so that P 001 makes the same decisions as any GSP
based on the CHW statistics that controls the FWER, for example, P 01 or P 02, by modifying their criti-
cal constants. Thus, P 001 is strictly not a sufficient statistics-based procedure; it simply re-expresses the
rejection rule in terms of the sufficient statistics by making the second stage critical constants functions
of the first stage data.

5.1. Procedure P 001
Proposition 3
Let .c1; c2/ and .d1; d2/ be the critical boundaries of P 01 (or P 02) that control the FWER at level ˛.
Denote the critical boundaries of P 001 by .c

00

1 ; c
00

2 / and .d
00

1 ; d
00

2 /. Then, P 01 (or P 02) and P 001 make identical
decisions (and hence P 001 controls the FWER at level ˛) if we set c

00

1 D c1, d
00

1 D d1,

c
00

2 D
1p

n1C n
0
2

24sn02
n2
.c2
p
n1C n2 �

p
n1x1/C

p
n1x1

35 (19)
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and

d
00

2 D
1p

n1C n
0
2

24sn02
n2
.d2
p
n1C n2 �

p
n1y1/C

p
n1y1

35 : (20)

Proof
Procedures P 01 and P 001 are equivalent at the first stage because c

00

1 D c1 and d
00

1 D d1. For the second
stage, it is easy to check using (7) and (8) that

X 02 > c2”X
0.2/ >

c2 �
p
f x1p

1� f

and

X
00

2 > c
00

2”X
0.2/ >

c
00

2 �
p
f 0x1p

1� f 0
:

Equating the right-hand sides of the aforementioned two inequalities (to get the same rejection regions)
and solving for c

00

2 yields (19). Equation (20) for d
00

2 is obtained in the same way. �

Remark 4
Gao et al. [6] provided the formula (19) for c

00

2 . They showed that in fact c
00

2 6 c2 for x1 2 Œ1:1; 2� for
˛ D 0:025. Thus, in this region, we can increase n2 to n02 without adjusting the critical constant c2 and
the resulting procedure would still be conservative.

5.2. Procedure P 002
As noted before, P 001 is simply a re-expression of P 01. To gain the potential power advantage associated
with sufficient statistics, we need to determine .c

00

2 ; d
00

2 / unconditionally by integrating over all possible
outcomes .x1; y1/ and solving the equation obtained by equating the resulting FWER integral to ˛. Here,
it is assumed that .c1; d1/ are prespecified. We denote the corresponding procedure by P 002 .

First, consider the problem of FWER control under H1. It is well known [2, 12] that the ˛-level
boundary .c1; c2/ does not control the FWER when used in conjunction with the sufficient test statistics
.X1; X

00

2 /. We can determine c
00

2 unconditionally as follows. For any given c1, the equation for FWER
control under H1 can be written as

FWERD P1CP2 D ˛;

where P1 Dˆ.�c1/ (here ˆ.�/ is the standard normal CDF) and

P2 D PH1.X1 6 c1; X
00

2 > c
00

2 /

D

Z c1

�1

PH1.
p
f 0X .1/C

p
1� f 0X

0.2/ > c
00

2 jX
.1/ D x1/�.x1/dx1

D

Z c1

�1

PH1

 
X
0.2/ >

c
00

2 �
p
f 0x1p

1� f 0

!
�.x1/dx1

D

Z c1

�1

ˆ

 
�c
00

2 C
p
f 0x1p

1� f 0

!
�.x1/dx1; (21)

where f 0 D n1=.n1 C n02/ is function of x1 because n02 depends on CP and hence on x1. We can solve
for c

00

2 by setting

P2 D

Z c1

�1

ˆ

 
�c
00

2 C
p
f 0x1p

1� f 0

!
�.x1/dx1 D ˛ �ˆ.�c1/: (22)

Next, we can derive the equation for determining d
00

2 to control the FWER under H2 as follows. First,

FWERD P1CP2 D ˛;
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where

P1 D PH2.X1 > c1; Y1 > d1/Dˆ2.�c1C ı1
p
n1;�d1j�/ (23)

is a function of specified .c1; d1/ and hence can be evaluated given n1; ı1, and �. Next,

P2 D PH2.X1 6 c1; X
00

2 > c
00

2 ; Y
00

2 > d
00

2 /

D

Z 1
�1

Z c1

�1

PH2

�p
f 0X .1/C

p
1� f 0X

0.2/ > c
00

2 ;
p
f 0Y .1/

C
p
1� f 0Y

0.2/ > d
00

2

ˇ̌̌
X .1/ D x1; Y

.1/ D y1

�
�2.x1; y1j�/dx1dy1

D

Z 1
�1

Z c1

�1

PH2

 
X
0.2/ >

c
00

2 �
p
f 0x1p

1� f 0
; Y
0.2/ >

d
00

2 �
p
f 0y1p

1� f 0

!
�2.x1; y1j�/dx1dy1

D

Z 1
�1

Z c1

�1

ˆ2

 
�c
00

2 C
p
f 0x1C ı1

p
n02p

1� f 0
;
�d
00

2 C
p
f 0y1p

1� f 0

ˇ̌̌̌
ˇ �
!
�2.x1; y1j�/dx1dy1: (24)

Having earlier obtained c
00

2 from (22), we can solve for d
00

2 from the aforementioned equation by setting
(24) equal to ˛ �P1, where P1 is given by (23).

6. Numerical evaluation of critical boundaries

Evaluation of the integrals in the aforementioned equations is complicated by the fact that
f 0 D n1=.n1C n

0
2/ is a function of CP (because n02 is) and hence of x1. Numerical integration is more

difficult for the Mehta–Pocock rule (12) than for the fixed increase rule, because in the former case, f 0

varies continuously with x1, whereas in the latter, f 0 is a step function of x1.
Computation of c

00

2 is relatively straightforward because Equation (21) does not involve any unknown
parameters. However, computation of d

00

2 is more complicated because both P1 given by (23) and P2
given by (24) depend on the unknown parameters ı1 and �. We will use the estimatesbı1 D x1=

p
n1

and b� D r as proposed in Remark 3. Note that this makes d
00

2 conditional on the first stage data.
However, as argued before, FWER is unconditionally controlled because it is controlled for every
observed .x1; y1; r/.

Table I gives the computed values of .c
00

2 ; d
00

2 / for the OF1–PO2 boundary ([13] boundary for the pri-
mary endpoint and the [14] boundary for the secondary endpoint) for ˛ D :05, �1 D 2:0, � D 0:5,
and � D 2; 4 (typically, sample size increases would be limited to a factor of 2, but we also consid-
ered a factor of 4 to study any patterns in the computed values). We considered three promising zones:
Œ30%; 70%�, Œ40%; 80%�, and Œ50%; 90%�. For the OF1 boundary, without sample size re-estimation, we
have c1 D 2:373 and c2 D 1:678. Similarly, for the PO2 boundary, we have d1 D d2 D 1:876. Note that
c
00

2 values are computed constants because they do not depend on the estimates of any unknown param-
eters. However, d

00

2 values are random variables because they depend on .x1; y1; r/. The values reported
in the table are averages obtained over 10,000 replications of .x1; y1; r/. It is seen that the c

00

2 values are
larger and the d

00

2 values are smaller for � D 2 than for � D 4. In either case, c
00

2 < c2 and d
00

2 < d2.
Thus, the critical boundaries of P 002 are sharper than those of P 01. The c

00

2 values become smaller and the
d
00

2 values become larger as the promising zone ŒCPmin;CPmax� shifts to the right, that is, the sample size
adjustment is made for higher CP values.

Table I. .c
00

2
; d
00

2
/ values for the OF1–PO2 boundary using the fixed

increase rule (13) for second stage sample size re-estimation (˛ D :05,
�1 D 2:0, and �D 0:5).

ŒCPmin;CPmax� � D 2 � D 4

Œ30%; 70%� .1:6717; 1:7203/ .1:6575; 1:7400/

Œ40%; 80%� .1:6624; 1:7231/ .1:6423; 1:7447/

Œ50%; 90%� .1:6505; 1:7282/ .1:6222; 1:7534/
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7. Power comparison

In this section, we compare the secondary powers (probability of rejecting false H2) of the following
procedures via simulation: P 01, which uses separate ˛-level boundaries .c1; c2/ and .d1; d2/, P 02 using
either the known � assumption (denoted as P 02.�/) or the upper confidence limit �� proposed in part I for
dealing with unknown � (denoted as P 02.��/), and P 002 based on sufficient statistics. Note that because
the first three procedures use the same primary test statistics .X1; X 02/ and the same critical boundary
.c1; c2/, their primary powers are identical. P 002 will have a different primary power because it uses dif-
ferent test statistics .X1; X

00

2 / and different critical boundary .c1; c
00

2 /; however, we did not study it in
this paper.

We considered the same six combinations of different parameters as in Table I. Throughout, we
kept the following quantities fixed: primary–secondary boundary combination: OF1–PO2, ˛ D :05,
n1 D n2 D 50, �1 D 2:0, � D 0:5 and the number of replications per simulation run D 10,000. In each
scenario, we varied �2 from 1.0 to 4.0 in steps of 0.5. We present the results in Tables II–VII.

Table II. Secondary powers of P 0
1

, P 0
2
.��/, P 0

2
.�/, and P 00

2
using [30%, 70%] promising zone for condi-

tional power and the fixed increase rule (13) with � D 2 for modified second stage sample size n0
2

(OF1–PO2
boundary combination, ˛ D :05, n1 D n2 D 50, �1 D 2:0, �D 0:5).

�2 P 01 P 02.��/ P 02.�/ P 002
1.0 0.290 0.350 0.364 0.363
1.5 0.549 0.595 0.609 0.620
2.0 0.744 0.773 0.785 0.785
2.5 0.851 0.864 0.867 0.868
3.0 0.884 0.888 0.889 0.889
3.5 0.899 0.900 0.900 0.900
4.0 0.900 0.900 0.900 0.901

Table III. Secondary powers of P 0
1

, P 0
2
.��/, P 0

2
.�/, and P 00

2
using [40%, 80%] promising zone for condi-

tional power and the fixed increase rule (13) with � D 2 for modified second stage sample size n0
2

(OF1–PO2
boundary combination, ˛ D :05, n1 D n2 D 50, �1 D 2:0, �D 0:5).

�2 P 01 P 02.��/ P 02.�/ P 002
1.0 0.292 0.338 0.355 0.369
1.5 0.536 0.586 0.601 0.610
2.0 0.742 0.771 0.780 0.785
2.5 0.841 0.855 0.859 0.859
3.0 0.891 0.896 0.897 0.899
3.5 0.894 0.895 0.895 0.896
4.0 0.898 0.898 0.898 0.900

Table IV. Secondary powers of P 0
1

, P 0
2
.��/, P 0

2
.�/, and P 00

2
using [50%, 90%] promising zone for condi-

tional power and the fixed increase rule (13) with � D 2 for modified second stage sample size n0
2

(OF1–PO2
boundary combination, ˛ D :05, n1 D n2 D 50, �1 D 2:0, �D 0:5).

�2 P 01 P 02.��/ P 02.�/ P 002
1.0 0.300 0.350 0.364 0.374
1.5 0.545 0.596 0.611 0.618
2.0 0.744 0.775 0.782 0.788
2.5 0.843 0.856 0.859 0.860
3.0 0.887 0.892 0.893 0.894
3.5 0.900 0.901 0.902 0.903
4.0 0.900 0.900 0.900 0.903
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Table V. Secondary powers of P 0
1

, P 0
2
.��/, P 0

2
.�/, and P 00

2
using [30%, 70%] promising zone for conditional

power and the fixed increase rule (13) with � D 4 for modified second stage sample size n0
2

(OF1–PO2
boundary combination, ˛ D :05, n1 D n2 D 50, �1 D 2:0, �D 0:5).

�2 P 01 P 02.��/ P 02.�/ P 002
1.0 0.317 0.364 0.380 0.397
1.5 0.567 0.609 0.623 0.633
2.0 0.759 0.786 0.794 0.796
2.5 0.852 0.864 0.868 0.868
3.0 0.892 0.898 0.899 0.900
3.5 0.904 0.906 0.906 0.909
4.0 0.906 0.906 0.906 0.908

Table VI. Secondary powers of P 0
1

, P 0
2
.��/, P 0

2
.�/, and P 00

2
using [40%, 80%] promising zone for condi-

tional power and the fixed increase rule (13) with � D 4 for modified second stage sample size n0
2

(OF1–PO2
boundary combination, ˛ D :05, n1 D n2 D 50, �1 D 2:0, �D 0:5).

�2 P 01 P 02.��/ P 02.�/ P 002
1.0 0.326 0.375 0.390 0.408
1.5 0.579 0.626 0.639 0.645
2.0 0.762 0.793 0.800 0.804
2.5 0.849 0.863 0.867 0.871
3.0 0.893 0.898 0.900 0.903
3.5 0.904 0.906 0.906 0.910
4.0 0.909 0.909 0.909 0.913

Table VII. Secondary powers of P 0
1

, P 0
2
.��/, P 0

2
.�/, and P 00

2
using [50%, 90%] promising zone for condi-

tional power and the fixed increase rule (13) with � D 4 for modified second stage sample size n0
2

(OF1–PO2
boundary combination, ˛ D :05, n1 D n2 D 50, �1 D 2:0, �D 0:5).

�2 P 01 P 02.��/ P 02.�/ P 002
1.0 0.344 0.393 0.407 0.426
1.5 0.594 0.637 0.651 0.656
2.0 0.765 0.792 0.800 0.803
2.5 0.858 0.869 0.871 0.876
3.0 0.890 0.894 0.894 0.903
3.5 0.902 0.903 0.903 0.910
4.0 0.905 0.905 0.905 0.913

For each simulation run, we computed the percentage power gain achieved by P 02.��/ over P 01 as a
fraction of the maximum achievable power gain of the gold standard procedure P 02.�/ for known � over
P 01 (which assumes �D 1), as defined in the following:

Power Gain .%/D
Power (�D ��)� Power (�D 1)

Power (Known �)� Power (�D 1)
� 100: (25)

For all scenarios, these power gains range between 70% and 80%. Procedure P 002 based on the suffi-
cient statistics generally has the highest power, even higher than that of the gold standard procedure
P 02.�/, demonstrating the power advantage of sufficient statistics. However, one must weigh this power
advantage of P 002 against the difficulty of computing its critical constants .c

00

2 ; d
00

2 /.

8. Extension to two samples

The basic setup and notation are the same as defined in Section 7 of part I. The stagewise test statistics
are given by

X .k/ D
U 1�k �U 2�k

�1
p
1=n1k C 1=n2k

and Y .k/ D
V 1�k � V 2�k

�2
p
1=n1k C 1=n2k

.k D 1; 2/; (26)
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where U i �k and V i �k are the sample means of the observations Uijk and Vijk averaged over patients
j D 1; : : : ; nik , respectively. Next, denote by U i �� and V i �� the overall sample means of the primary and
secondary endpoints data for the i th group and ni � D ni1C ni2 (i D 1; 2). The cumulative test statistics
.X1; Y1/ and .X2; Y2/ for the first and second stages are as defined in (11) and (12), respectively, of
part I. Note that we can express X2; Y2 as follows:

X2 D
n11

q
n2�
n1�
U 1�1 � n21

q
n1�
n2�
U 2�1

�1
p
n1�C n2�

C
n12

q
n2�
n1�
U 1�2 � n22

q
n1�
n2�
U 2�2

�1
p
n1�C n2�

and

Y2 D
n11

q
n2�
n1�
V 1�1 � n21

q
n1�
n2�
V 2�1

�2
p
n1�C n2�

C
n12

q
n2�
n1�
V 1�2 � n22

q
n1�
n2�
V 2�2

�2
p
n1�C n2�

:

These can be expressed as linear combinations of the stagewise test statistics .X .k/; Y .k// for k D 1; 2
only if n11 D n21 and n12 D n22, that is, if the treatment and control groups have a balanced sample size
allocation in both stages. From now on, we will assume this condition (which may not hold exactly when
the patients are randomized to the treatment and control groups). Then, it is easy to show thatX2; Y2 can
be written as follows:

X2 D
p
f X .1/C

p
1� f X .2/ and Y2 D

p
f Y .1/C

p
1� f Y .2/; (27)

where

f D
n11C n21

n1�C n2�
D

n�1

n�1C n�2
(28)

is the fraction of the total sample size allocated to the first stage, which is analogous to the information
fraction f D n1=.n1C n2/ in the one-sample case.

Next, consider the case where the second stage total sample size n�2 D n12 C n22 is re-estimated
to n0�2 D n012 C n

0
22. Let U

0

i �2 and V
0

i �2 (i D 1; 2) be the sample means of the second stage data with
re-estimated sample sizes. The corresponding second stage standardized test statistics X

0.2/ and Y
0.2/

are defined as in (26) for k D 2 but with all quantities in the formulae replaced by their primed analogs.
Once again assuming a balanced sample size allocation with n11 D n21 and n012 D n

0
22, the second stage

CHW statistics are given by (7) with X .1/, X
0.2/, Y .1/, Y

0.2/ for the two-sample problem as defined
previously and f given by (28). Similarly, the sufficient statistics are given by (8) and (9) with

f 0 D
n�1

n�1C n
0
�2

:

An alternative and a more direct way of defining sufficient statistics is

X 02 D
U 1�� �U 2��

�2
p
1=n1�C 1=n2�

and Y 02 D
V 1�� � V 2��

�2
p
1=n1�C 1=n2�

: (29)

This definition does not require the assumption of the balanced sample size allocation. We will use this
definition in the example in the following text.

We have assumed that the standard deviations �1 and �2 are known, but in practice, they must be
estimated. The first stage pooled (from the treatment and the control groups) estimate of �1 is given by

b� .1/1 D
sP2

iD1

Pni1
jD1.Uij1 �U i �1/

2

n11C n21 � 2

with an analogous expression for b� .1/2 . These estimates will be used to calculate X .1/ and Y .1/. The

second stage pooled estimates, b� .2/1 and b� .2/2 , have similar expressions except the sample sizes ni2 are
changed to the re-estimated sample sizes n0i2. Because X

0.2/ and Y
0.2/ must be based only on the second

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2041–2054
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stage data, these second stage pooled estimates are used in their calculation and not the overall pooled
estimatesb�1 andb�2, where

b�1 D
vuutP2

iD1

Pni1
jD1.Uij1 �U i ��/

2C
P2
iD1

Pn0
i2

jD1.Uij2 �U i ��/
2

n�1C n
0
�2 � 2

with an analogous expression for b�2. We use these overall pooled estimates in the calculation of the
sufficient statistics (29) in the example in the following text.

9. Example

We will use the same ISOLDE trial example from part I. As discussed there, we will use the rate of
decline in forced expiratory volume at 1 s (FEV1) as the primary endpoint and the rate of decline in
forced vital capacity(FVC) as the secondary endpoint where the rates of decline are computed by divid-
ing the difference between the final measurement (the timing of which varies from patient to patient
depending upon how many visits they completed) and the baseline measurement (at randomization) by
the period (in months) between the two measurements.

To allow for sample size re-estimation with increased sample size at the second stage, we assume
that the original trial was planned with a total of 300 patients with n�1 D n�2 D 150 patients in each
stage (randomized between the treatment and the placebo). This design corresponds to primary power
of 90% to detect a clinically significant difference of ı1 D .�1 � �2/=�1 D 0:53 or approximately
0.50. The sample size re-estimation rule is as follows: if CP at the interim look is in the promising zone
Œ50%; 90%�, then we would use n0�2 D 2n�2 D 300 patients bringing the total number of patients to 450.
We further assume that the OF1–PO2 boundary combination with ˛ D 0:05 is used for the primary and
secondary endpoints. The corresponding OF1 critical values are c1 D 2:7959; c2 D 1:9770 and the PO2
critical values are d1 D d2 D 2:0661.

Of the first 150 patients, n11 D 69 were randomized to the treatment and n21 D 81 to the control. At
the interim look, we have the following summary statistics:

U 1�1 D�0:0029; U 2�1 D�0:0070; V 1�1 D�0:0091; V 2�1 D�0:0142;

b� .1/1 D 0:0143;b� .1/2 D 0:0304; r D 0:6661:
From these summary statistics, we can calculate X .1/ D 1:7783 and Y .1/ D 1:0151. Because X .1/ < c1,
sampling continues to the second stage. To determine if the second stage sample size needs to be re-
estimated, we calculate the CP. We havebı1 D .U 1�1 � U 2�1/=b� .1/1 D .�0:0029C 0:0070/=0:0143 D
0:2913. CP is given by the formula (10) with n2 replaced by its two-sample analog .n12n22/=.n12Cn22/.
At the interim look, n12 and n22 are as yet unobserved, so we take n12 D n22 D 150=2 D 75, which
gives .n12n22/=.n12C n22/D 37:5. Also, f D 0:5. Substituting these values in (10), we get

CPD 1�ˆ

 
1:9770� 1:7783

p
0:5

p
1� 0:5

� 0:2913
p
37:5

!
D 1�ˆ.�0:7659/D 0:7782:

Because CP falls in the promising zone, we increase the second stage sample from 150 to 300.
It would be instructive to compare this sample size with what one gets using the Gao–Ware–Mehta

formula (11). Modified for the two-sample setup, that formula becomes

n0�2 D
4

ı21

�
1

n�2
Œc2
p
n�1C n�2 � x1

p
n�1�C ´ˇ

	2
:

Substitutingbı1 D 0:2913, n�1 D n�2 D 150, c2 D 1:9770, x1 D 1:7783, and ´ˇ D 1:282 for 1�ˇ D 0:90,
we get n0�2 D 249:3 or 250.

In the actual data if we consider the next 300 patients, then we find that n12 D 161 were randomized
to the treatment and n22 D 139 to the control resulting in a total of n1� D 230 patients on the treatment
and n2� D 220 on the control. The second stage summary statistics are as follows:

U 1�2 D�0:0043; U 2�2 D�0:0084; V 1�2 D�0:0070; V 2�2 D�0:0135;b� .2/1 D 0:0119;b� .2/2 D 0:0278:
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From these summary statistics, we calculate X
0.2/ D 2:9195 and Y

0.2/ D 2:0069.
The CHW statistics equal

X 02 D
p
f X .1/C

p
1� f X

0.2/ D
p
1=2.1:7783/C

p
1=2.2:9195/D 3:3218

and

Y 02 D
p
f Y .1/C

p
1� f Y

0.2/ D
p
1=2.1:0151/C

p
1=2.2:0069/D 2:1369:

P 01 compares X 02 and Y 02 with c2 D 1:9770 and d2 D 2:0661, respectively. Thus, P 01 rejects both H1 and
H2. P 02 compares X 02 with c2 D 1:9770 but Y 02 with d 02 D 2:0665, which is determined from (16) given

the observed values of .X1; Y1/, � estimated by r D 0:6661 and ı1 estimated bybı1 D 0:2913. So, we
obtain the same result.

Next, we will apply P 002 based on the sufficient statistics. The overall sample means and the standard
deviations are

U 1�� D�0:0039; U 2�� D�0:0079; V 1�� D�0:0076; V 2�� D�0:0137;b�1 D 0:0127;b�2 D 0:0287:
Using (29), we can calculate the sufficient statistics as

X
00

2 D
�0:0039C 0:0079

0:0127
p
1=230C 1=220

D 3:3398

and

Y
00

2 D
�0:0076C 0:0137

0:0287
p
1=230C 1=220

D 2:2538:

To apply P 002 , we calculated c
00

2 D 1:9497 from (23) and d
00

2 D 2:0555 from (24) given .X1; Y1/ D

.1:7783; 1:0151/, � estimated by r D 0:6661 and ı1 estimated bybı1 D 0:2913. These values are slightly
smaller than c2 and d2, respectively. Once again, X

00

2 > c
00

2 and Y
00

2 > d
00

2 , so we get the same result.

10. Discussion

Although P 002 based on sufficient statistics is the most powerful among the procedures that were com-
pared, there are some practical drawbacks associated with it. First, computation of its critical constants
.c
00

2 ; d
00

2 / is rather complicated. Second, and more important, it requires that .c
00

2 ; d
00

2 / be prespecified,
which makes the sample size increase binding if the CP falls in the promising zone; otherwise, the stop-
ping boundary will not be valid. This ties the hands of the Data Monitoring Committee, which may not
want to increase the sample size because of other reasons such as slow accrual rate or excessive toxicity.
On the other hand, procedure P 02.��/ gives the flexibility to change the plans about sample size adapta-
tion without the risk of inflating the type I error. These practical considerations must be weighed against
the fact that the procedure P 002 has the higher secondary power. Thus, although the CHW statistics are
less efficient, they are more practically applicable because of their flexibility.

The problem of binary data was considered in the Discussion section of part I. It was noted there that
there are difficulties in extending the normal data results to binary data especially in the two-sample case
because of the dependence of the correlation coefficient between the primary and secondary endpoints
on the corresponding success probabilities for the treatment and control groups, which must be equal
(i.e., H1 and H2 must be true) for the assumption of the common correlation coefficient for the two
groups to be valid.
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